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1. Imntroduction. The form of the Bayes estimate of the population

mean with respect to a Di;ichlet prior with parameter a has given rise to
the interpretation that u(ﬁ) is the prior sample size. Furthermore, if
q(X) is made to tend to zero, then the Bayes estimate mathematically con-
verges to the classical estimator, namely the sample mean. This has
further given rise to the general feeling that allowing a(k) to become
small not only makes the 'prior sample size' small but also that it
corresponds to no prior information. By investigating the limits of
prior distributions as the parameter a tends to various values, we show
that it is misleading to think of a(X? as the prior sample size and the
smallness of a(X)las no prior informaiion. In fact very small values of
a(X) actually mean that we have very definite information concerning the

-~
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unknown true distribution."'( \ . e O
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2. The Dirichlet measure. Let (X, A) be separable metric spaéb'gigxrib joy Codo®
11eb- r
endowed with the corresponding Borel o-field. Let P and M be the clésa,{q AU ;p;’o
Tpec®

of probability measures and finite measures (countably additive) on -P»"
(X, A). The natural o-field, o(P), on P is the smallest o-field in P \ A ‘
such that the function P }—> P(A) is measurable for each A in A. Thejx’
is also the notion of weak convergence in both P and M, namely, a. %a
if and only if [gda_+ [gda for all bounded continuous functions on X.
Under this convergence P becomes a separable complete metric space
(Prohorov [4]) and the o-field o(P) above is the Borel o-field in P.
To each non-zero measure a in M, we denote by a the corresponding normalized
measure, namely a(A) = a(A)/a(X), A € A.

In non-parametric Bayesian analysis, the 'true' probability measure
P takes values in P, is random and has a prior distribution. To facilitate
the use of standard probability theory we must view P as a measurable map
from some probability space (2, S, Q) into (P, o(P)) and the induced
measure QP'l becomes the prior distribution. For any non-zero measure a
in M, the Dirichlet prior measure Da with parameter o, is defined as
follows (Ferguson [3]): For any finite measurable partition (Al’ voes Ak)
of X, the distribution of (P(Al), vees P(Ak)) under Du is the singular
Dirichlet distribution D(°(A1)’ ceey u(Ak)) defined on the k-dimensional
simplex as in Wilks [7] Section 7.7. Ferguson [3] used this definition
and also an alternate definition (See Theorem 1 of Ferguson [3]), and
derived many properties of Dirichlet priors and the corresponding Bayes
estimates of population parsmcters. Blackwell [1] and Blackwell and

MacQueen [2] have also given alternative definitions of the Dirichlet
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prior. We give below yet another definition of the Dirichlet prior which

is more general than the previous ones since we will not have to assume
that X is separable metric. Let a be a non-zero measure in M. Let

(®, S, Q) be a probability space rich enough to support two independent
sequences of i.i.d. random variables Yl’ Yz, ... and el. 92, .++, Where
Y, is X-valued and has distribution a and 9, is real valued and has a
Beta distribution with parameters 1 and ao(X). Let P ® el, P, = 62(1-01).
Py = 93(1-01)(1—62), «... For any y in X let Gy stand for the degenerate
probability measure at y. Define the measurable map P from (R, S) into

(P, a(P)) as follows:

®
P(A) = § P;oy (A). (1.1)
j=1 j
Then the induced distribution of P is the Dirichlet measure Da with
parameter a. The proof of this fact and that the standard properties
of Dirichlet measures can be deduced from this will be given elsewhere,
Sethuraman [5].

In the statistical problem of non-parametric Bayesian analysis we
have a random variable P taking values in P and whose distribution is Da.
We also have a sample xl, seny Xn, which are random variables taking values
in X. Given P, these are i.i.d. with common distribution P. It is re-
quired to estimate a function ¢(P), and the Bayes estimator 3 with respect

to squarod loss is given by

EPIX;, o0y X

In particular, if ¢(P) = og(P) where
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6,(P) = [g()P(dx) (1.2)
where g is a real valued measurable function on X with fgzda < », then the

Bayes estimate is given by

3 o a(X)fgda + nfgdF
iy - 0GR, (1.3

where Fn is the empirical d.f. of Xl, cees Xn (Ferguson [3]). In this if
we let a(X) + 0 we obtain the classical estimate [ngn. Also the denominator
in this estimate is a(X) + n which is a(X) plus the sample size. These
facts have given rise to the interpretation that a(X) is the prior sample
size and allowing a(X) to tend to zero corresponds to no prior information.
In the next section we investigate what happens to Dirichlet measures

when their parameters are allowed to converge to certain values. In

section 4 we investigate what happens to Bayes estimates when the parameters
of the corresponding Diricﬁlet priors are allowed to converge to the zero
measure. From the results in these two sections it follows that small
values of a(X) actually correspond to certain definitive information about

P.

3. Convergence of Dirichlet measures. In this section we study

the convergence of Dirichlet measures as their parameter is allowed to
converge in appropriate ways. Since (P, o(P)) is a separable complete
metric space endowed with its Borel o-field, we can talk about the usual
weak convergence of probability measures on (P, o(P)) and of Dirichlet

measures, in particular.




THEOREM 3.1. Let {1r} be a sequence of measures in M and let the

sequence of normalized uweasures {E;} be tight. Then the sequence {Da } of
r

Dirichlet measures is tight.

Tf PROOF. Fix ¢ > 0. There exists a sequence of compact sets K, in X
- such that
5 sup 5 (K) < 6c/d%2, (3.1)

d=1,2, .... Let

§ o
il My = {P: P(KD < 1/d), (3.2)
4 d=1, 2, ... and let

l M= n L (3.3)

Then clearly M is a compact subset of P in the weak topology. Now, by the

Chebysheff inequality

<

c C\y & 4 T (kS 242
b narcud) sd EDu (P(KP) = d a_(Ky) S 6¢/n2d (3.4)
! T
and
D, M) < ] 6e/n2d? = ¢, for all 1. (3.5)
T d

This proves that {Da } is tight. O
r

< s e o e eI

THEOREM 3.2, Let {cr} be a sequence of measures in M such that

sup o, (A) - 2, (W] + 0 (3.6)

where o is a non-zero measure in M. Then D, converges to Du weakly.
T o
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PROOF. The proof of this result rests heavily on the constructive
definition of the Dirichlet measure in (1.1) and the following result

which is proved in Sethuraman [6].

Let {Br} be a sequence of probability measures on an arbitrary measurable

space (Y, B) and let

sup |8_(B) - 8,(B)| » 0, (3.7)
B

where Bo is a probability measure on (¥, B). Then there exists a sequence

of Y-valued random variables {Yr}: with marginal distributions {ar}: such

that
Prob. {Yr # Yo} +0asr -+, (3.8)

From (1.1) and the abov: result, we can find independent sequences of i.i.d.
random variables {Y;}. {e;}. r=20,1, 2, ... such that the distribution

of Y: is 5;, the distribution of ef is Beta with parameters 1 and a_(X),

r=0,1, ..., and

Prob. (v;.' # vg.’) +0 (3.9)

and

Prob. (e;'; e‘j’) +0asr+®, j=1,2, .... (3.10)

Furthermore, if p] = 0, p;' = e;'n-e;'_l) ... (1-€]) for j 2 1, and

PPy = I pjs (), (3.11)
j=1 Yj
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then the distribution of PT is the Dirichlet measure Du ,r=0,1, ....
T

From (3.11) it can be easily shown that, for any integer m,

m m
T 0 r o]
105 £ Y9
1 1p le+'21 ) £ YD

sup |PT(A) - P°(A)] <
A )=1 j=

(3.12)
= o ul T
+2 TTa-69) « TT (1-67).

=1 =
From the construction above and (3.8}, (3.9) and (3.12) and by first
choosing m appropriately and then allowing r to tend to « that
sup IPr(A) - P°(A)| + 0 in probability which is a stronger assertion than
A
made in the theorem, namely that b, +D, weakly. D

T o

THEOREM 3.3. Let {ar} be a sequence of measures in M such that

ar(X) + 0 and s:p IE;(A) - ;;(A)l +0asr~+o, (3.13)

where E; is a probability measure in P. Then the measures D, converge to a
T

random degenerate measure § o where Y° has distribution 5;.
Y

PROOF. As before we can construct independent sequences of i.i.d.

random variables {Y'} and {e?}, and an independent random variable Y°,

j j
such that Y;' has distribution a_, Y® has distribution E‘o. the distribution
of G{ is Beta with parameters 1 and “r(x)' r=1,2, ..., and

Prob. (y’l’ 1Y) +0asr+o,

Furthermore, if p{ s e{, p; = e;(l-ej_l) cee (1-9;), for j 21, and




r b r
PP(a) = J P8 (), (3.15)

j=1 Y. 4
J= j

then the distribution of P* is the Dirichlet measure with parameter a_,
l‘=1, 2, vese ﬂ

From (3.15), it is easily seen that

. "

sup [PT(A) - 5 (A)] s 10Y] # Y% « 2(1-p)). (3.16)
A Y

From (3.14) and the fact that °r(x) + 0, it follows that

sup IPr(A) -6 o(A)l + 0 in probability which again is stronger than the
A Y
assertion of the theorem. [

From Theorem 3.2 it is clear that allowing ur(X) to tend to zero does
not correspond to no information on P. In fact if ar(X) + 0 and the nor-
malized measure E} converges in the strong sense of (3.13) to a probability
measure E;, then the information about P is that it is a probability measure
concentrated at a particular point in X which is chosen at random according
to E;. This is definitely very strong information about P and most probably
not of the type any statistician would be willing to make.

4. Convergence of Bayes estimates. In this section we are mainly

interested in the limits of Bayes estimates of various function ¢(P) as

a(X) + 0. We will therefore make the following assumption throughout this

section:

a (X) + 0 and s:P IE;(A) - a | »o, (4.1)

where E; is a probability measure in P, We will also be mainly concerned




‘ with a special class of functions ¢(P) as defined below. Let g be a
1

permutation invariant measurable function from Xk into R™ such that

[ lgtxy,...x;, XgsresXos wov Xpeox )| dalx)) ... do(x) <= (4.2)

for all possible combinations of arguments (xl, cees Xy Xgy eees Xy eeny
Xy cees xm) from all distinct (m = k) to all identical (m = 1). When

the function g vanishes whenever any two coordinates are equal, condition

PN F NS

(4.2) reduces to the simple condition

] lelxys «ovn x| da(x,) ... da(x) < =. (4.3)

Ay et
L

Define the parametric function

S A

~ F gy
- ata—.

4, (P) = [ gxps ooy x)AP(x)) ... dP(x,) (4.4)
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for all those P's for which it exists, Let P have Da as the prior distri-

bution and let (Xl, vees Xn) be a sample from P. Under further assumptions %f

concerning the second moment of g under Ek, the Bayes estimate (with respect {f

|
*

to squared error loss) of ¢g(P) based on the sample is

“n
b o E,,ucogcp)lxl....,xn). (4.5)

and based on no sample is

+0
Yg,0 = Ep (4,(P). (4.6)

Since the conditi i
nditional distribution of P given (Xlo cees xn) 1s D“‘"Fn’

where Pn is the empirical distribution function of (xl, cees Xn), we have

~n ~0
0g,a = .g,u0nFn' (14.7)

TR

Suppose that we substitute a = a_ where {°r} satisfies (4.1). From the

results of section 3 we know that
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(4.8)

and

D +D (4.9)
arﬁnFn nFn

as r + ., The main result of this section pertains to the convergence of

0

Ao ~
the Bayes estimates ¢g o 3nd ¢g,aran'

e

THEOREM 4.1. Let condition (4.1) hold. Let g be a continuous function

from Xk into Rl. Let g(xl, een Xps Xgy cvey Xgy wees Xpooeo, xm) be
uniformly integrable with respect to E?, for all combinations of arguments

(xl, cesy xl, Xys cevs Xosy eovs Xy voes xm) from all distinct to all

identical. Then

Ao —
¢8'°‘r ~ ! glx, .. x)dao(x) (4.10)
and
bgrosnf ™ Sgnp =By @2 oo 3)) (4.11)
&% " n &0 nF

where (Zl, ceus Zk) is a sample from P where P has the distribution DnF .
n

PROOF. The easiest way to prove this result is to use the repre-
sentation (1.1) for the random probability measure P with a Dirichlet
distribution. The uniform integrability conditions on g with respect to

a_ immediately show that ¢g(pr) is unifornly integrable with respect to D_
b o

since it is the convex combination of uniformly integrable functions as

given below:
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og(P’) = 2 p? . p§ g(Yg s vees Y.
Gyoeeondy) 1 k 1

where Yi, ... are i,i.d. with common distribution 5;. This fact and (4.8)

and (4.9) establish the results (4.10) and (4.11) of the theorem. 0

The results of this theorem generalize those of Ferguson [3] Section
Sb and 5e and Yamato [8), [9]. Also when g(xl, . xk) is such that it
vanishes whenever two coordinates are equal, it is easy to see that

60 = n(k) U
g,nF, "k “g,n

where U n is the usual U statistic based on g and the sample (xl, ey XD

This result is also contained in Yamato [8], {9].
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